Перевод: со всех языков на все языки

со всех языков на все языки

сопротивление фазы

  • 1 сопротивление фазы

    n

    Универсальный русско-немецкий словарь > сопротивление фазы

  • 2 сопротивление фазы

    Dictionnaire technique russo-italien > сопротивление фазы

  • 3 полное сопротивление фазы

    impedenza f di fase

    Dictionnaire technique russo-italien > полное сопротивление фазы

  • 4 сопротивление

    с.
    1) ( свойство) resistenza f
    2) ( резистор) resistenza f, resistore m
    - активное сопротивление
    - акустическое сопротивление
    - акустическое полное сопротивление
    - акустическое реактивное сопротивление
    - амортизационное сопротивление
    - анодное сопротивление
    - аномальное сопротивление
    - сопротивление антенны
    - полное сопротивление антенны
    - реактивное сопротивление антенны
    - сопротивление арматуры
    - асинхронное полное сопротивление
    - аэродинамическое сопротивление
    - сопротивление базы
    - балансное сопротивление
    - балластное сопротивление
    - безындуктивное сопротивление
    - прямое сопротивление вентиля
    - полное сопротивление взаимодействия
    - сопротивление вибрации
    - вихревое сопротивление
    - внешнее сопротивление
    - внутреннее сопротивление
    - внутреннее удельное сопротивление
    - сопротивление воздуха
    - волновое сопротивление
    - вредное сопротивление
    - временное сопротивление
    - входное сопротивление
    - сопротивление в цепи возбуждения
    - сопротивление выдёргиванию
    - выносное сопротивление
    - высокостабильное сопротивление
    - выходное сопротивление
    - гасящее сопротивление
    - гидравлическое сопротивление
    - гидродинамическое сопротивление
    - граничное сопротивление
    - графитовое сопротивление
    - сопротивление громкоговорителя
    - сопротивление грунта
    - сопротивление движению
    - действующее сопротивление
    - действующее реактивное сопротивление
    - демпфирующее сопротивление
    - сопротивление деформации
    - динамическое сопротивление
    - диссипативное сопротивление
    - дифференциальное сопротивление
    - сопротивление диффузии
    - диэлектрическое сопротивление
    - добавочное сопротивление
    - дроссельное сопротивление
    - ёмкостное сопротивление
    - жидкостное сопротивление
    - сопротивление забивке
    - сопротивление заземления
    - зарядное сопротивление
    - защитное сопротивление
    - сопротивление изгибу
    - сопротивление излому
    - сопротивление излучения
    - сопротивление излучения антенны
    - измерительное сопротивление
    - сопротивление износу
    - сопротивление изоляции
    - индуктивное сопротивление
    - инерционное сопротивление
    - инерционное реактивное сопротивление
    - сопротивление интерференции
    - сопротивление истечению
    - истинное сопротивление
    - сопротивление истиранию
    - кажущееся сопротивление
    - катодное сопротивление
    - сопротивление катушки
    - сопротивление качению
    - сопротивление коллектора
    - коммутационное реактивное сопротивление
    - компенсирующее сопротивление
    - сопротивление конденсатора
    - контактное сопротивление
    - сопротивление короблению
    - сопротивление короткого замыкания
    - корректирующее сопротивление
    - сопротивление коррозии
    - критическое сопротивление
    - сопротивление кручению
    - линейное сопротивление
    - сопротивление линии
    - лобовое сопротивление
    - магнитное сопротивление
    - максимальное сопротивление
    - сопротивление материалов
    - механическое сопротивление
    - минимальное сопротивление
    - сопротивление нагрузки
    - сопротивление на промежуточной частоте
    - сопротивление на разрыв
    - сопротивление насыщения
    - начальное сопротивление
    - нелинейное сопротивление
    - несимметричное сопротивление
    - сопротивление обмотки
    - сопротивление обмотки ротора
    - сопротивление обмотки статора
    - сопротивление обмотки якоря
    - обратное сопротивление
    - сопротивление обратной связи
    - объёмное сопротивление
    - ограничительное сопротивление
    - сопротивление окружающей среды
    - омическое сопротивление
    - осевое сопротивление
    - остаточное сопротивление
    - отрицательное сопротивление
    - сопротивление отрыву
    - сопротивление отслаиванию
    - сопротивление охрупчиванию
    - параллельное сопротивление
    - переменное сопротивление
    - сопротивление переменной нагрузке
    - сопротивление переменному току
    - переходное сопротивление
    - периодическое полное сопротивление
    - плёночное сопротивление
    - поверхностное сопротивление
    - погонное сопротивление
    - полезное сопротивление
    - сопротивление ползучести
    - полное сопротивление
    - полное входное сопротивление
    - полное выходное сопротивление
    - полное кинетическое сопротивление
    - полное механическое сопротивление
    - полное передаточное сопротивление
    - полупеременное сопротивление
    - поляризационное сопротивление
    - сопротивление поперечному изгибу
    - последовательное сопротивление
    - постоянное сопротивление
    - сопротивление постоянному току
    - сопротивление потерь
    - предельное сопротивление
    - сопротивление при сверхзвуковых скоростях
    - сопротивление при трогании с места
    - проволочное сопротивление
    - сопротивление продольному изгибу
    - профильное сопротивление
    - сопротивление прямой последовательности
    - пусковое сопротивление
    - развязывающее сопротивление
    - сопротивление раздавливанию
    - сопротивление раздиранию
    - сопротивление разрушению
    - сопротивление разрыву
    - разрядное сопротивление
    - распределённое сопротивление
    - магнитное сопротивление рассеяния
    - реактивное сопротивление рассеяния
    - сопротивление растяжению
    - расчётное сопротивление
    - реактивное сопротивление
    - регулировочное сопротивление
    - регулируемое сопротивление
    - сопротивление резанию
    - резонансное сопротивление
    - сверхпереходное индуктивное сопротивление
    - светочувствительное сопротивление
    - сопротивление связи
    - полное сопротивление связи
    - сопротивление сдвигу
    - секционное сопротивление
    - сопротивление сеточного контура
    - сопротивление сжатию
    - симметричное сопротивление
    - синхронное реактивное сопротивление
    - сопротивление скалыванию
    - сопротивление скольжению
    - сопротивление скручиванию
    - сложное сопротивление
    - смешанное сопротивление
    - сопротивление смещения
    - сопротивление смятию
    - собственное сопротивление
    - сопротивление со скользящим контактом
    - сосредоточенное сопротивление
    - составное сопротивление
    - сопротивление среды
    - сопротивление срезу
    - стабилизирующее сопротивление
    - сопротивление старению
    - статическое сопротивление
    - сопротивление стиранию
    - темновое сопротивление
    - тепловое сопротивление
    - термическое сопротивление
    - сопротивление термическому окислению
    - тормозное сопротивление
    - сопротивление трения
    - угольное сопротивление
    - сопротивление удару
    - удельное сопротивление
    - удельное магнитное сопротивление
    - удельное объёмное сопротивление
    - упругое сопротивление
    - уравновешивающее сопротивление
    - сопротивление ускорению
    - сопротивление усталости
    - сопротивление утечки
    - полное сопротивление утечки
    - реактивное сопротивление утечки
    - сопротивление утечки сетки
    - сопротивление фазы
    - полное сопротивление фазы
    - фиксированное сопротивление
    - сопротивление формы
    - характеристическое полное сопротивление
    - полное сопротивление холостого хода
    - сопротивление царапанью
    - сопротивление цепи
    - сопротивление цепи сетки
    - шунтирующее сопротивление
    - эквивалентное сопротивление
    - экономичное сопротивление
    - сопротивление экстракции
    - электрическое сопротивление
    - сопротивление эмиттера
    - сопротивление эрозии
    - эталонное сопротивление
    - эффективное сопротивление

    Dictionnaire technique russo-italien > сопротивление

  • 5 сопротивление газовой фазы

    Универсальный русско-английский словарь > сопротивление газовой фазы

  • 6 сопротивление со стороны твёрдой фазы при кристаллизации

    Универсальный русско-английский словарь > сопротивление со стороны твёрдой фазы при кристаллизации

  • 7 полное сопротивление нулевой последовательности (трехфазной обмотки)

    1. Nullimpedanz (einer Mehrphasenwicklung)

     

    полное сопротивление нулевой последовательности (трехфазной обмотки)
    Полное сопротивление обмотки фазы в омах при номинальной частоте между соединенными вместе линейными выводами трехфазной обмотки, соединенной по схеме «звезда» или «зигзаг», и выводом ее нейтрали
    (МЭС 421-07-04).
    Примечания
    1 Полное сопротивление нулевой последовательности обмотки может иметь несколько значений, зависящих от способов соединения и нагрузки другой(их) обмотки(ок).
    2 Полное сопротивление нулевой последовательности может зависеть от значений тока и температуры, особенно в трансформаторах, не имеющих обмоток, соединенных в «треугольник».
    3 Полное сопротивление нулевой последовательности может быть выражено в относительных значениях, так же как и полное сопротивление короткого замыкания (прямой последовательности)
    [ ГОСТ 30830-2002]

    EN

    zero-sequence impedance (of a polyphase winding)
    the impedance, expressed in ohms per phase at rated frequency, between the line terminals of a polyphase star or zigzag-connected winding connected together and its neutral terminal
    [IEV number 421-07-04]

    FR

    impédance homopolaire (d'un enroulement polyphasé)
    impédance, exprimée en ohms par phase à la fréquence assignée, entre les bornes de ligne d'un enroulement polyphasé en étoile ou en zigzag reliées ensemble et sa borne de neutre
    [IEV number 421-07-04]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > полное сопротивление нулевой последовательности (трехфазной обмотки)

  • 8 полное сопротивление нулевой последовательности (трехфазной обмотки)

    1. zero-sequence impedance (of a polyphase winding)

     

    полное сопротивление нулевой последовательности (трехфазной обмотки)
    Полное сопротивление обмотки фазы в омах при номинальной частоте между соединенными вместе линейными выводами трехфазной обмотки, соединенной по схеме «звезда» или «зигзаг», и выводом ее нейтрали
    (МЭС 421-07-04).
    Примечания
    1 Полное сопротивление нулевой последовательности обмотки может иметь несколько значений, зависящих от способов соединения и нагрузки другой(их) обмотки(ок).
    2 Полное сопротивление нулевой последовательности может зависеть от значений тока и температуры, особенно в трансформаторах, не имеющих обмоток, соединенных в «треугольник».
    3 Полное сопротивление нулевой последовательности может быть выражено в относительных значениях, так же как и полное сопротивление короткого замыкания (прямой последовательности)
    [ ГОСТ 30830-2002]

    EN

    zero-sequence impedance (of a polyphase winding)
    the impedance, expressed in ohms per phase at rated frequency, between the line terminals of a polyphase star or zigzag-connected winding connected together and its neutral terminal
    [IEV number 421-07-04]

    FR

    impédance homopolaire (d'un enroulement polyphasé)
    impédance, exprimée en ohms par phase à la fréquence assignée, entre les bornes de ligne d'un enroulement polyphasé en étoile ou en zigzag reliées ensemble et sa borne de neutre
    [IEV number 421-07-04]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > полное сопротивление нулевой последовательности (трехфазной обмотки)

  • 9 полное сопротивление нулевой последовательности (трехфазной обмотки)

    1. impédance homopolaire (d'un enroulement polyphasé)

     

    полное сопротивление нулевой последовательности (трехфазной обмотки)
    Полное сопротивление обмотки фазы в омах при номинальной частоте между соединенными вместе линейными выводами трехфазной обмотки, соединенной по схеме «звезда» или «зигзаг», и выводом ее нейтрали
    (МЭС 421-07-04).
    Примечания
    1 Полное сопротивление нулевой последовательности обмотки может иметь несколько значений, зависящих от способов соединения и нагрузки другой(их) обмотки(ок).
    2 Полное сопротивление нулевой последовательности может зависеть от значений тока и температуры, особенно в трансформаторах, не имеющих обмоток, соединенных в «треугольник».
    3 Полное сопротивление нулевой последовательности может быть выражено в относительных значениях, так же как и полное сопротивление короткого замыкания (прямой последовательности)
    [ ГОСТ 30830-2002]

    EN

    zero-sequence impedance (of a polyphase winding)
    the impedance, expressed in ohms per phase at rated frequency, between the line terminals of a polyphase star or zigzag-connected winding connected together and its neutral terminal
    [IEV number 421-07-04]

    FR

    impédance homopolaire (d'un enroulement polyphasé)
    impédance, exprimée en ohms par phase à la fréquence assignée, entre les bornes de ligne d'un enroulement polyphasé en étoile ou en zigzag reliées ensemble et sa borne de neutre
    [IEV number 421-07-04]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > полное сопротивление нулевой последовательности (трехфазной обмотки)

  • 10 полное сопротивление короткого замыкания пары обмоток

    1. Kurzschlußimpedanz eines Wicklungspaares

     

    полное сопротивление короткого замыкания пары обмоток
    Сопротивление, равное Z = R + jХ, Ом, определяемое при номинальной частоте и расчетной температуре между выводами одной из обмоток пары, при замкнутой накоротко другой обмотке этой пары и разомкнутых остальных обмотках при их наличии. Для трехфазного трансформатора полное сопротивление короткого замыкания пары обмоток является полным сопротивлением фазы (в эквивалентной схеме соединения «звезда»).
    В трансформаторе, имеющем обмотку с ответвлениями, полное сопротивление короткого замыкания относят к конкретному ответвлению. Если в НД не оговорено иное, выбирают основное ответвление.
    Примечание — Полное сопротивление короткого замыкания пары обмоток может быть выражено в относительных значениях z, например в процентах базисного полного сопротивления короткого замыкания Zбаз той же обмотки пары
    Z=100Z/Zбаз
    Где Zбаз=U2/Sном
    (для трехфазных и однофазных трансформаторов), Ом (U — напряжение (номинальное или напряжение ответвления) обмотки, к которой относятся Z и Zбаз, В; Sном — номинальная мощность основного ответвления трансформатора, В•А).
    Относительное значение полного сопротивления короткого замыкания может быть также определено как отношение напряжения, приложенного к данной обмотке в опыте короткого замыкания, вызывающего протекание через эту обмотку номинального тока (либо тока ответвления), к номинальному напряжению этой обмотки (либо напряжению ответвления). Это приложенное напряжение определяют как напряжение короткого замыкания (МЭС 421-07-01) данной пары обмоток и, как правило, выражают в процентах
    (МЭС 421-07-02).
    [ ГОСТ 30830-2002]

    EN

    short-circuit impedance of a pair of windings
    the equivalent star connection impedance related to one of the windings, for a given tapping and expressed in ohms per phase, at rated frequency, measured between the terminals of a winding when the other winding is short-circuited
    NOTE – This value is normally related to the appropriate reference temperature
    [IEV number 421-07-02]

    FR

    impédance de court-circuit d'une paire d'enroulements
    impédance équivalente en connexion étoile, rapportée à l'un des enroulements, pour une prise donnée et exprimée en ohms par phase, à la fréquence assignée, mesurée aux bornes d'un enroulement lorsque l'autre enroulement est en court-circuit
    NOTE – Cette valeur est normalement rapportée à une température de référence appropriée.
    [IEV number 421-07-02]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > полное сопротивление короткого замыкания пары обмоток

  • 11 полное сопротивление короткого замыкания пары обмоток

    1. short-circuit impedance of a pair of windings

     

    полное сопротивление короткого замыкания пары обмоток
    Сопротивление, равное Z = R + jХ, Ом, определяемое при номинальной частоте и расчетной температуре между выводами одной из обмоток пары, при замкнутой накоротко другой обмотке этой пары и разомкнутых остальных обмотках при их наличии. Для трехфазного трансформатора полное сопротивление короткого замыкания пары обмоток является полным сопротивлением фазы (в эквивалентной схеме соединения «звезда»).
    В трансформаторе, имеющем обмотку с ответвлениями, полное сопротивление короткого замыкания относят к конкретному ответвлению. Если в НД не оговорено иное, выбирают основное ответвление.
    Примечание — Полное сопротивление короткого замыкания пары обмоток может быть выражено в относительных значениях z, например в процентах базисного полного сопротивления короткого замыкания Zбаз той же обмотки пары
    Z=100Z/Zбаз
    Где Zбаз=U2/Sном
    (для трехфазных и однофазных трансформаторов), Ом (U — напряжение (номинальное или напряжение ответвления) обмотки, к которой относятся Z и Zбаз, В; Sном — номинальная мощность основного ответвления трансформатора, В•А).
    Относительное значение полного сопротивления короткого замыкания может быть также определено как отношение напряжения, приложенного к данной обмотке в опыте короткого замыкания, вызывающего протекание через эту обмотку номинального тока (либо тока ответвления), к номинальному напряжению этой обмотки (либо напряжению ответвления). Это приложенное напряжение определяют как напряжение короткого замыкания (МЭС 421-07-01) данной пары обмоток и, как правило, выражают в процентах
    (МЭС 421-07-02).
    [ ГОСТ 30830-2002]

    EN

    short-circuit impedance of a pair of windings
    the equivalent star connection impedance related to one of the windings, for a given tapping and expressed in ohms per phase, at rated frequency, measured between the terminals of a winding when the other winding is short-circuited
    NOTE – This value is normally related to the appropriate reference temperature
    [IEV number 421-07-02]

    FR

    impédance de court-circuit d'une paire d'enroulements
    impédance équivalente en connexion étoile, rapportée à l'un des enroulements, pour une prise donnée et exprimée en ohms par phase, à la fréquence assignée, mesurée aux bornes d'un enroulement lorsque l'autre enroulement est en court-circuit
    NOTE – Cette valeur est normalement rapportée à une température de référence appropriée.
    [IEV number 421-07-02]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > полное сопротивление короткого замыкания пары обмоток

  • 12 полное сопротивление короткого замыкания пары обмоток

    1. impédance de court-circuit d'une paire d'enroulements

     

    полное сопротивление короткого замыкания пары обмоток
    Сопротивление, равное Z = R + jХ, Ом, определяемое при номинальной частоте и расчетной температуре между выводами одной из обмоток пары, при замкнутой накоротко другой обмотке этой пары и разомкнутых остальных обмотках при их наличии. Для трехфазного трансформатора полное сопротивление короткого замыкания пары обмоток является полным сопротивлением фазы (в эквивалентной схеме соединения «звезда»).
    В трансформаторе, имеющем обмотку с ответвлениями, полное сопротивление короткого замыкания относят к конкретному ответвлению. Если в НД не оговорено иное, выбирают основное ответвление.
    Примечание — Полное сопротивление короткого замыкания пары обмоток может быть выражено в относительных значениях z, например в процентах базисного полного сопротивления короткого замыкания Zбаз той же обмотки пары
    Z=100Z/Zбаз
    Где Zбаз=U2/Sном
    (для трехфазных и однофазных трансформаторов), Ом (U — напряжение (номинальное или напряжение ответвления) обмотки, к которой относятся Z и Zбаз, В; Sном — номинальная мощность основного ответвления трансформатора, В•А).
    Относительное значение полного сопротивления короткого замыкания может быть также определено как отношение напряжения, приложенного к данной обмотке в опыте короткого замыкания, вызывающего протекание через эту обмотку номинального тока (либо тока ответвления), к номинальному напряжению этой обмотки (либо напряжению ответвления). Это приложенное напряжение определяют как напряжение короткого замыкания (МЭС 421-07-01) данной пары обмоток и, как правило, выражают в процентах
    (МЭС 421-07-02).
    [ ГОСТ 30830-2002]

    EN

    short-circuit impedance of a pair of windings
    the equivalent star connection impedance related to one of the windings, for a given tapping and expressed in ohms per phase, at rated frequency, measured between the terminals of a winding when the other winding is short-circuited
    NOTE – This value is normally related to the appropriate reference temperature
    [IEV number 421-07-02]

    FR

    impédance de court-circuit d'une paire d'enroulements
    impédance équivalente en connexion étoile, rapportée à l'un des enroulements, pour une prise donnée et exprimée en ohms par phase, à la fréquence assignée, mesurée aux bornes d'un enroulement lorsque l'autre enroulement est en court-circuit
    NOTE – Cette valeur est normalement rapportée à une température de référence appropriée.
    [IEV number 421-07-02]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > полное сопротивление короткого замыкания пары обмоток

  • 13 осаждение из паровой фазы

    1. PVD
    2. physical vapor deposition

     

    осаждение из паровой фазы
    Процесс покрытия, разновидность осаждения материала в виде индивидуальных атомов или молекул. Наиболее общие PVD методы включают разбрызгивание и испарение. Разбрызгивание, которое является главным процессом PVD, использует перенос материала от источника к детали посредством бомбардировки цели газовыми ионами, которые ускоряются высоким напряжением. Испарение, которое было первым используемым процессом PVD, использует перенос материала, чтобы формировать покрытие только физическим способом, по существу выпариванием. PVD покрытия используются, чтобы улучшить износостойкость, сопротивление истиранию и твердость режущих инструментов, а так же, как коррозионно-стойкие покрытия.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > осаждение из паровой фазы

  • 14 resistenza di fase

    Dictionnaire polytechnique italo-russe > resistenza di fase

  • 15 impedenza di fase

    сопротивление фазы, полное

    Dictionnaire polytechnique italo-russe > impedenza di fase

  • 16 Strangwiderstand

    сущ.
    электр. сопротивление одной ветви обмотки, сопротивление фазы

    Универсальный немецко-русский словарь > Strangwiderstand

  • 17 зануление

    1. nulling
    2. neutral grounding
    3. neutral earthing

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > зануление

  • 18 neutral grounding

    1. зануление
    2. заземление нейтрали

     

    заземление нейтрали

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > neutral grounding

  • 19 neutral earthing

    1. зануление

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > neutral earthing

  • 20 nulling

    1. формирование нуля
    2. нуллификация
    3. зануление

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

     

    нуллификация
    Принудительное завершение операций, которые доведены до своего логического завершения.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    формирование нуля
    Образование провала в диаграмме направленности антенны в заданном направлении.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > nulling

См. также в других словарях:

  • сопротивление — 3.93 сопротивление (resistance): Способность конструкции или части конструкции противостоять действию нагрузок. Источник: ГОСТ Р 54382 2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление изоляции — 3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли. Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление изоляции фазы (сети) — 3.3 сопротивление изоляции фазы (сети): Активное сосредоточенное (эквивалентное распределенному) сопротивление изоляции фазы (общее трех фаз) сети относительно земли. Источник: ГОСТ Р 52273 2004: Устройства защиты от токов утечки рудничные …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление срабатывания — 3.7 сопротивление срабатывания: Наибольшее значение сопротивления изоляции фазы (сети), вызывающее срабатывание устройства защиты. Источник: ГОСТ Р 52273 2004: Устройства защиты от токов утечки рудничные для сетей напряжением до 1200 В. Об …   Словарь-справочник терминов нормативно-технической документации

  • ФАЗЫ РАЗВИТИЯ ПСИХОТЕРАПЕВТИЧЕСКОЙ ГРУППЫ —         Это этапы группового процесса, характеризующиеся специфическими видами активности и взаимодействия участников группы и выполняющие различные функции.         Специфический фазный характер процесса групповой психотерапии, который… …   Психотерапевтическая энциклопедия

  • линейное сопротивление — 3.5.3 линейное сопротивление: среднее арифметическое сопротивлений между всеми клеммами фаз питания. Примечание 1 Для трехфазных машин при соединении в звезду сопротивление фазы равно половине линейного сопротивления. Для соединения в треугольник …   Словарь-справочник терминов нормативно-технической документации

  • Расчетное сопротивление проводов — 1. Расчетное сопротивление проводов 1.1. Активное сопротивление прямой последовательности одной фазы проводника (r) в миллиомах рассчитывают по формуле                                             (31) где сJ коэффициент, учитывающий увеличение… …   Словарь-справочник терминов нормативно-технической документации

  • полное сопротивление нулевой последовательности (трехфазной обмотки) — Полное сопротивление обмотки фазы в омах при номинальной частоте между соединенными вместе линейными выводами трехфазной обмотки, соединенной по схеме «звезда» или «зигзаг», и выводом ее нейтрали (МЭС 421 07 04).… …   Справочник технического переводчика

  • полное сопротивление короткого замыкания пары обмоток — Сопротивление, равное Z = R + jХ, Ом, определяемое при номинальной частоте и расчетной температуре между выводами одной из обмоток пары, при замкнутой накоротко другой обмотке этой пары и разомкнутых остальных обмотках при их наличии. Для… …   Справочник технического переводчика

  • удельное массовое сопротивление осадка — Ндп. удельное весовое сопротивление осадка Сопротивление осадка с равномерной по толщине пористостью и массой твердой фазы, равной единице, приходящееся на единицу поверхности фильтровальной перегородки, отнесенное к единице вязкости. [ГОСТ 16887 …   Справочник технического переводчика

  • Удельное массовое сопротивление осадка — 34. Удельное массовое сопротивление осадка Ндп. Удельное весовое сопротивление осадка Сопротивление осадка с равномерной по толщине пористостью и массой твердой фазы, равной единице, приходящееся на единицу поверхности фильтровальной перегородки …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»